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1. 

The problem of transverse vibrations of a thin rectangular plate subjected to a
non-uniform, in-plane loading (see Figure 1) must be tackled in two steps:

First, the solution of the corresponding plane stress problem is required which is
governed by Airy’s biharmonic equation

94U=0, (1)

whose solution, satisfying appropriate boundary conditions, allows the determination of
the components of the stress tensor [1]

sx̄ =
12U
1ȳ2 , sȳ =

12U
1x̄2 , tx̄ȳ =−

12U
1x̄ 1ȳ

. (2)

Second, once expressions (2) are determined, multiplying them by the plate thickness,
h, one obtains the stress resultants

Nx̄ =Nx̄ (x̄, ȳ), Nȳ =Nȳ (x̄, ȳ), Nx̄ȳ =Nx̄ȳ (x̄, ȳ), (3)

and substitutes them in the vibrating plate equation which, for normal modes, is
conveniently expressed in the form

D014W
1x̄4 +2

14W
1x̄2 1ȳ2 +

14W
1ȳ4 1−0Nx̄

12W
1x̄2 +2Nx̄ȳ

12W
1x̄ 1ȳ

+Nȳ
12W
1ȳ2 1− rhv2W=0. (4)

In some instances researchers have mistakingly omitted that first step in the analytical
solution assuming that the stress resultants field is given directly by [2]

Nx̄ =Sf( ȳ), Nȳ =Nx̄ȳ =0, (5)

where Sf( ȳ) is the applied stress resultant at x̄=2a; see Figure 1.
It can be shown that this procedure is only valid if f( ȳ) is either constant or a linear

function of ȳ [3].
The present study deals with the determination of the fundamental frequency coefficient

of transverse vibration of the structural system, shown in Figure 1, for several
combinations of boundary conditions. As a first order approximation for Airy’s stress
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Figure 1. Vibrating structural system under study.

function U(x̄, ȳ), use is made of the expression Ua (x̄, ȳ) presented in reference [1]† which
has been obtained using the Rayleigh–Ritz method:

U(x̄, ȳ)3Ua (x̄, ȳ)=
S
2

ȳ201−
1
6

ȳ2

b21+ a1 (x̄2 − a2)2( ȳ2 − b2)2, (6)

where

a1 =
S

a4b2

1
(64/7)+ (256/49) (b2/a2)+ (64/7) (b4/a4)

.

Substituting equation (6) in equations (2) and (3) and introducing x̄=2ax, ȳ=2by and
l= a/b, one obtains

Nx =Sg1 (x, y), Ny =Sg2 (x, y), Nxy =Sg12 (x, y), (7)

where

g1 (x, y)=1−4y2 +
4b

l2 (4x2 −1)2(12y2 −1),

g12 (x, y)=−
64b

l3 (4x3 − x) (4y3 − y), g2 (x, y)=
4b

l4 (12x2 −1) (4y2 −1)2,

b=
l6

(64/7)l4 + (256/49)2 + (64/7)
.

†Since in the present study one is interested in stress resultants, the thickness of the plate, h, is assumed to
be included in the parameter S.
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Figure 2. Partition of the plate domain when using the differential quadrature method (d=10−4).

Accordingly the governing partial differential equation results, after substitution of
equation (7) and the dimensionless variables x and y into equation (4):

14W
1x4 +2l2 14W

1x2 1y2 + l4 14W
1y4 −S1 0g1

12W
1x2 +2lg12

12W
1x 1y

+ l2g2
12W
1y2 1−V2W=0, (8)

where V=zrh/D (2a)2v, S1 =4a2S/D.
The solution of equation (8) subject to the corresponding boundary conditons at the

edges x̄=−a, ȳ=−b; x̄= a, and ȳ= b (Figure 1) will be approached in the present
study using the differential quadrature method [4–6].

2.        

Due to the efforts of Bert and associates, the method of differential quadrature is already
well established in the technical literature [4–6].

Following references [4–6] the plate domain is partitioned as shown in Figure 2. For
all the situations considered, the number of nodal points in each direction was N=9.

Using the notation introduced by Bert and co-workers [4–6] one obtains, in the case of
a simply supported rectangular plate,

s
N−1

k1 =2

Dik1 Wk1 j +2l2 s
N−1

k1 =2

s
N−1

k2 =2

Bik1 Bjk2 Wk1 k2 + l4 s
N−1

k2 =2

Djk2 Wik2

−S1 $g1ij s
N−1

k1 =2

Bik1 Wk1 j +2lg12ij s
N−1

k1 =2

s
N−1

k2 =2

Aik1 Ajk2 Wk1 k2
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T 1

Values of V1 in the case of a simply supported rectangular plate, boundary
conditions: SS (x=−a), SS (y=−b), SS (x= a), SS (y= b)

l S1 =0 1 10 20 50

1a 19·732 19·928 21·544 23·208 27·604
Reference [7] 19·74 — — — —

1·5a 32·078 32·180 33·086 34·061 36·824
Reference [7] 32·08 — — — —

2a 49·351 49·414 49·972 50·583 52·364
aPresent results.

T 2

Values of V1 in the case of a SS–C–SS–SS rectangular plate

l S1 =0 1 10 20 50

1a 23·636 23·801 25·153 26·574 30·441
Reference [7] 23·65 — — — —

1·5a 42·532 42·606 43·269 43·991 46·082
Reference [7] 42·53 — — — —

2a 69·337 69·380 69·758 70·175 71·402
aPresent results.

T 3

Values of V1 in the case of a SS–C–SS–C rectangular plate

l S1 =0 1 10 20 50

1a 28·952 29·090 30·207 31·402 34·735
Reference [7] 28·95 — — — —

1·5a 56·366 56·420 56·902 57·431 58·979
Reference [7] 56·35 — — — —

2a 95·288 95·317 95·575 95·859 96·699
aPresent results.

T 4

Values of V1 in the case of a C–SS–SS–SS rectangular plate, obtained by means
of the differential quadrature method

l S1 =0 1 10 20 50

1 23·636 23·823 25·357 26·948 31·195
1·5 35·048 35·151 36·062 37·043 39·818
2 51·675 51·739 52·314 52·943 54·775
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T 5

Values of V1 in the case of a C–C–SS–SS rectangular plate

l S1 =0 1 10 20 50

1a 27·043 27·205 28·541 29·944 33·767
Reference [7] 27·06 — — — —

1·5a 44·892 44·969 45·657 46·405 48·563
Reference [7] 44·89 — — — —

2a 71·090 71·135 71·532 71·968 73·255
a Present results.

T 6

Values of V1 in the case of a C–C–SS–C rectangular plate, obtained by means
of the differential quadrature method

l S1 =0 1 10 20 50

1 31·830 31·971 33·114 34·330 37·707
1·5 58·203 58·260 58·771 59·329 60·957
2 95·603 96·633 96·906 97·207 98·096

T 7

Values of V1 in the case of a C–SS–C–SS rectangular plate

l S1 =0 1 10 20 50

1a 28·952 29·116 30·454 31·870 35·766
Reference [7] 28·95 — — — —

1·5a 39·116 39·212 40·066 40·993 43·655

2a 54·800 54·863 55·428 56·049 57·873
Reference [7] 54·75 — — — —

aPresent results.

T 8

Values of V1 in the case of a C–C–C–SS rectangular plate

l S1 =0 1 10 20 50

1a 31·830 31·978 33·183 34·470 38·051
Reference [7] 31·83 — — — —

1·5a 48·195 48·270 48·937 49·668 51·799
Reference [7] 48·17 — — — —

2a 73·467 73·512 73·911 74·352 75·661
aPresent results.
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+l2g2ij s
N−1

k2 =2

Bjk2 Wik2%−V2Wij =0, (i, j=3, . . . , N−2),

s
N−1

k1 =2

B2k1 Wk1 j =0, ( j=3, . . . , N−1),

s
N−1

k2 =2

B2k2 Wik2 =0, (i=2, . . . , N−2),

s
N−1

k1 =2

B(N−1)k1 Wk1 j =0, ( j=2, . . . , N−2),

s
N−1

k2 =2

B(N−1)k2 Wik2 =0, (i=3, . . . , N−1), (9)

where the D’s, B’s and A’s are the coefficients of the linear combinations of fourth, second
and first order derivatives of the displacement amplitude W(x, y), respectively.

Similar systems of equations are obtained for other combinations of boundary
conditions.

Admittedly the present analysis has been facilitated by the fact that the non-uniform
stress field is known in advance. It seems quite advantageous, in a general situation, to
obtain the solution of the stress problem and then the vibrational response, in a unified
manner, by means of the differential quadrature technique.

3.  

All calculations have been performed for l= a/b=1, 1·5 and 2, while values taken for
the stress resultant parameter, S1 =4a2S/D, were 0, 1, 10, 20 and 50.

The fundamental frequency parameters V1 are listed in Tables 1–9. The eigenvalues have
been compared with values available in the literature (S1 =0, [7]). It was observed that
good agreement was achieved.

As expected, the effect of S1 becomes less important as a/b increases.

T 9

Values of V1 in the case of a clamped rectangular plate

l S1 =0 1 10 20 50

1a 36·008 36·139 37·206 38·353 41·592
Reference [7] 35·99 — — — —

1·5a 60·816 60·872 61·376 61·932 63·572
Reference [7] 60·77 — — — —

2a 98·396 98·427 98·702 99·008 99·921
Reference [7] 98·33 — — — —

aPresent results.
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4. 

As shown, the differential quadrature method allows for the straightforward solution
of a complex elastodynamics problem. If the solution of the plane stress problem is not
known in advance, the differential quadrature technique may be used to one’s advantage
by solving first the plane stress problem and then to tackle the transverse vibrations
problem.
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